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In the present paper we study the role of particle interactions on the evolution of a high energy
beam. The interparticle forces taken into account are due to space charge alone. We derive the
collision integral for a charged particle beam in the form of Balescu-Lenard and Landau and con-
sider its further simplifications. Finally, the transition to the generalized kinetic equation has been
accomplished by using the method of adiabatic elimination of fast variables.

I. INTRODUCTION.

In most of the works so far, dedicated to the study of beam plasma properties the effect of interparticle collisions
has been neglected. In many important cases this is a sensible approximation giving satisfactory results, yet one has
to elucidate the limits of validity of ”collisionless beam” approach and to investigate the role of collision phenomena
in beam physics. Collisions are expected to bring about effects such as thermalization, resistivity, diffusion etc.
that influence the long term behaviour of charged particle beams. The reasoning commonly adopted for employing
the ”collisionless beam” approach is that characteristic beam-plasma frequencies are much greater than collision
frequencies for a large number of situations in beam physics. Such an assumption is not based on stable physical
grounds as pointed in [1].

The term ”collisionless beam” means that interactions between particles giving rise to dissipation and hence leading
to establishment of equilibrium state are not taken into account. In a number of cases involving reasonable approx-
imations it is sufficient to compute the macroscopic characteristics (charge and current densities) in relatively big
volume elements containing a large number of particles. As a result interaction manifests itself in the form of a
mean, self-consistent field thus preserving the reversible character of the dynamics involved, and leading to the time
reversible Vlasov’s equation.

The notion of ”collisional beam” usually conceived as the counterpart of ”collisionless beam” implies that dissipation
due to redistribution of beam particles is taken into account, resulting in additional term (in the form of Landau or
Balescu-Lenard) in the kinetic equation. In a sense, Landau and Vlasov approximations correspond to two limit cases:
namely the Landau collision integral takes into account interactions that determine dissipation while the effect of the
mean, self-consistent field is not included into the physical picture involved. On the contrary, the latter is the only
way interactions manifest themselves in the Vlasov equation, leaving however the question about the role of collisions
near particle-wave resonances unanswered. The Balescu-Lenard approximation lies somewhat in between Landau and
Vlasov limit cases with the due account of dynamic polarization of the beam, that is a more complete inclusion of
collective effects resulting from interactions between charged particles.

In the present paper we derive the collision integrals for charged particle beams. The transition to the unified kinetic,
hydrodynamic and diffusion description of particle beam propagation embedded in the generalized kinetic equation
[2] is further accomplished building on the concept of a coarse-grained hydrodynamic picture. The latter implies the
existence (and their proper definition) of characteristic spacial and temporal scales typical for the hydrodynamic level
of description [1], [3]. Within the elementary cell of continuous medium thus defined it is naturally assumed that local
equilibrium state is reached. This state is further described (defining the drift and diffusion coefficients in coordinate
space) by the method of adiabatic elimination of fast variables, widely used to match the transition to Smoluchowski
equation [4]. The granulation of phase space with the due account of concrete structure of continuous medium results
in additional collision integral in the kinetic equation, thus describing the dissipation caused by spacial diffusion of
the distribution function and redistribution of particle coordinates [2], [3].

The generalized kinetic equation makes it possible to build an unified picture of non equilibrium processes on kinetic
and hydrodynamic scales without involving a perturbation expansion in Knudsen number [3]. It can be shown that
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the set of hydrodynamic equations for cold beams put in appropriate form is equivalent to mesoscopic quantum-like
description of particle beam propagation [5], [6].

The scope of the presentation given in the paper is as follows. In Sections II and III we formulate and solve the
equation for the fluctuations of the microscopic phase space density in the case of a space charge dominated high
energy beam. The solution obtained provides the grounds to find explicitly the collision integral in the form of
Balescu-Lenard. Sections IV - VI deal with the various forms and simplifications of the collision integral. In Section
VII we derive the additional Fokker-Planck term in the generalized kinetic equation. Finally, Section VIII presents
the conclusions of our study.

II. AVERAGED MICROSCOPIC EQUATIONS.

In a previous paper [2] we derived the equation for the microscopic phase space density with a small source, taking
into account the proper physical definition of continuous medium. It was the starting point in the transition to the
generalized kinetic equation for the one-particle distribution function. The equation for the microscopic phase space
density reads as

∂N

∂θ
+ R

(
v̂ · ∇̂x

)
N + R

[
∇̂p ·

(
F̂0 + F̂(M)

)]
N =

1
θph

(
N̂ −N

)
, (2.1)

where N = N
(
x̂, p̂(k); θ

)
is the true microscopic phase space density written in the variables

x̂ = (x̂, ẑ, σ̂) ; p̂(k) =
(
p̂(k)
x , p̂(k)

z , η̂(k)
)
. (2.2)

They are related to the canonical coordinates x = (x, z, σ) and canonical momenta p = (px, pz, h) through the
following equations

û = u− ηDu ; p̂(k)
u = p̃(k)

u − η
dDu
ds

; σ̂ = σ +
∑

u=(x,z)

(
u
dDu
ds
− p̃uDu

)
, (2.3a)

η̂(k) = h(k) − 1
β2
o

; η = h− 1
β2
o

; h =
H

β2
oEo

, (2.3b)

p(k)
u = pu − qAu ; h(k) = h− qϕ

β2
oEo

, (2.3c)

where u = (x, z) and all other notations are the same as in Ref. [2]. In particular the following designations

v̂ =
(
p̂(k)
x , p̂(k)

z ,−Kη̂(k)
)

; ∇̂x =
(
∂

∂x̂
,
∂

∂ẑ
,
∂

∂σ̂

)
, (2.4a)

∇̂p =

(
∂

∂p̂
(k)
x

,
∂

∂p̂
(k)
z

,
∂

∂η̂(k)

)
, (2.4b)

F̂0 =
(
−∂U
∂x̂

,−∂U
∂ẑ

,
1

2πR
∆E0

β2
oEo

sin
(
ωσ̂

cβo
+ Φ0

))
, (2.4c)

F̂(M) =
q

β2
oEo

{
(1 + x̂ ·K)

[
E(M) + vo

(
es ×B(M)

)]
+ es

(
p̂(k) ·E(M)

)}
+
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+
q

po

(
p̂(k) ×B(M)

)
u
, (2.4d)

es = (0, 0, 1) (2.4e)

have been introduced in equation (2.1), while N̂
(
x̂, p̂(k); θ

)
is the smoothed microscopic phase space density

N̂
(
x̂, p̂(k); θ

)
=
∫
d3~ρG ( x̂| ~ρ)N

(
~ρ, p̂(k); θ

)
(2.4f)

with a smoothing function G (x| ~ρ).
The next step consists in averaging the Klimontovich equation (2.1) over the relevant Gibbs ensemble with using

the definition of one-particle distribution function [7]

〈
N
(
x̂, p̂(k); θ

)〉
= nf

(
x̂, p̂(k); θ

)
, (n = Np/V ) (2.5a)

∫
d3x̂d3p̂(k)f

(
x̂, p̂(k); θ

)
= V, (2.5b)

where Np is the total number of particles in the beam and V is the volume occupied by the beam. By taking into
account the representation of the microscopic phase space density and the microscopic force in terms of mean and
fluctuating part

N = nf + δN ; F̂(M) =
〈
F̂
〉

+ δF̂ ;
〈
N F̂(M)

〉
= nf

〈
F̂
〉

+
〈
δNδF̂

〉
(2.6)

we obtain the generalized kinetic equation

∂f

∂θ
+R

(
v̂ · ∇̂x

)
f + R

[
∇̂p ·

(
F̂0 +

〈
F̂
〉)]

f = Jcol
(
x̂, p̂(k); θ

)
+ J̃

(
x̂, p̂(k); θ

)
, (2.7)

where

Jcol
(
x̂, p̂(k); θ

)
= −R

n
∇̂p ·

〈
δF̂δN

〉
; J̃

(
x̂, p̂(k); θ

)
=

1
θph

(
f̂ − f

)
. (2.8)

are the collision integrals. It was previously shown [2], [3] that the additional collision integral J̃
(
x̂, p̂(k); θ

)
can

be cast into a Fokker-Planck “collision term”, where the Fokker-Planck operator acts in coordinate space only. The
equation for the fluctuating part δN reads as[

∂

∂θ
+R

(
v̂ · ∇̂x

)
+ R∇̂p ·

(
F̂0 +

〈
F̂
〉)]

δN = −nR∇̂p ·
(
fδF̂

)
+

+R∇̂p ·
[〈
δF̂δN

〉
− δF̂δN

]
+

1
θph

(
δ̂N − δN

)
. (2.9)

Averaging the Maxwell-Lorentz equations we get

∇r × 〈B〉 =
1
c2
∂ 〈E〉
∂t

+ µ0qnj (r; t) ; ∇r × 〈E〉 = −∂ 〈B〉
∂t

, (2.10a)
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∇r · 〈B〉 = 0 ; ∇r · 〈E〉 =
qn

ε0
ρ (r; t) , (2.10b)

where

ρ (r; t) =
∫
d3p(k)f

(
r,p(k); t

)
; j (r; t) =

∫
d3p(k)vf

(
r,p(k); t

)
. (2.11)

The equations for the fluctuating fields are similar to (2.10) and read as

∇r × δB =
1
c2
∂δE
∂t

+ µ0qδj (r; t) ; ∇r × δE = −∂δB
∂t

, (2.12a)

∇r · δB = 0 ; ∇r · δE =
q

ε0
δρ (r; t) , (2.12b)

where

δρ (r; t) =
∫
d3p(k)δN

(
r,p(k); t

)
; δj (r; t) =

∫
d3p(k)vδN

(
r,p(k); t

)
. (2.13)

Taking divergence of the first of equations (2.12) and utilizing the last one, it can be easily seen that the continuity
equation for fluctuating quantities holds

∂

∂t
δρ (r; t) +∇r · δj (r; t) = 0

(
ε0µ0 = 1/c2

)
. (2.14)

It should be pointed out that the microscopic electromagnetic fields depend on the coordinates x = (x, z, σ)
through the microscopic phase space density N written in these coordinates. The rest of this section is dedicated to
the derivation of some useful relations, needed for the subsequent exposition. Consider the simple change of variables

d3rd3p(k) = (1 + x ·K)2
dxdzdsdp(k)

x dp(k)
z dp(k)

s =

= (1 + x ·K)2 |detJ1| dxdzdσdp̃(k)
x dp̃(k)

z dh(k).

Noting that

x = x̃ ; z = z̃ ; s = σ + vot,

p(k)
x = pop̃

(k)
x ; p(k)

z = pop̃
(k)
z ; p(k)

s =
poS

1 + x ·K ,

S =

√
β2
oh

(k)2 − 1
β2
oγ

2
o

− p̃(k)2
x − p̃(k)2

z

we easily find

|detJ1| = p3
o

β2
oh

(k)

S (1 + x ·K)
.

Hence

d3rd3p(k) = p3
o (1 + x ·K)

β2
oh

(k)

S dxdzdσdp̃(k)
x dp̃(k)

z dh(k).
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Continuing further we use the relations

u = û + η̂Du ; p̃(k)
u = p̂(k)

u + η̂
dDu
ds

; σ = σ̂ +
∑

u=(x,z)

(
p̂uDu − û

dDu
ds

)
,

h(k) = η̂(k) +
1
β2
o

and finally get

d3rd3p(k) = p3
o (1 + x ·K)

1 + β2
o η̂

(k)

S dx̂dẑdσ̂dp̂(k)
x dp̂(k)

z dη̂(k).

As far as

S ≈
√

1 + 2η̂(k) + β2
o η̂

(k)2 ≈ 1 + η̂(k)

for βo ≈ 1 we obtain

d3rd3p(k) = p3
o (1 + x ·K) d3x̂d3p̂(k). (2.15)

Thus, integration in the expressions for the charge and current density

δρ (r; t) =
∫
d3p̂(k)δN

(
x, p̂(k); θ

)
; δj (r; t) =

∫
d3p̂(k)vδN

(
x, p̂(k); θ

)
. (2.16)

goes approximately over the new kinetic momenta p̂(k).

III. SPECTRAL DENSITIES OF FLUCTUATIONS.

In order to determine the collision integral (2.8) we have to solve equation (2.9) governing the evolution of fluctua-
tions δN . Under the assumption that fluctuations are small the second term on the right hand side of equation (2.9)
can be neglected [

∂

∂θ
+ R

(
v̂ · ∇̂x

)
+R∇̂p ·

(
F̂0 +

〈
F̂
〉)]

δN (x̂; θ) =

= −nR∇̂p ·
(
δF̂ (x; θ) f (x̂; θ)

)
. (3.1)

The small source in the initial equation (2.9) has been dropped off as non relevant for the dynamics of small-scale
fluctuations. The term containing the mean force in equation (3.1) can be neglected. This is justified when calculating
the small-scale fluctuations if

ωp � νx,z,σωo

(
ω2
p =

q2n

ε0mo
; r2

D =
ε0kBT

q2n

)
. (3.2)

Here T is the temperature of the beam, ωo is the angular frequency of synchronous particle, νx,z,σ stands for the
betatron tunes in the two transverse planes as well as for the synchrotron tune. Furthermore ωp is the beam plasma
frequency and rD - the Debye radius. It is worthwhile to note that the physical meaning of Debye radius for particle
beams is somewhat different from that commonly used in plasma physics. In fact Debye radius is an equilibrium
characteristic of the beam, indicating the exponential decay of the self-field, needed to self-maintain this equilibrium
state.

The contribution of small-scale fluctuations can be better extracted if a small source proportional to ∆ is introduced
into the left hand side of (3.1)
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[
∂

∂θ
+ R (ṽ · ∇x) + ∆

]
δN (x; θ) = −nR∇̂p ·

(
δF̂ (x; θ) f (x̂; θ)

)
, (3.3)

ṽ =
(
p̃(k)
x , p̃(k)

z ,−Kη̂(k)
)
.

In going over from equation (3.1) to (3.3) the left hand side has been represented in terms of the variables x = (x, z, σ).
The general solution of the above equation can be written as

δN
(
x, p̂(k); θ

)
= δNs

(
x, p̂(k); θ

)
+ δN ind

(
x, p̂(k); θ

)
, (3.4)

where δN ind is a generic solution of (3.3), while δNs accounts for the discrete structure of the beam as a collection
of particles. The latter can be determined from [7]

[
∂

∂θ
+R (ṽ · ∇x) + ∆

]
〈δNs (X; θ) δNs (X1; θ1)〉 = 0 ;

(
X = x, p̂(k)

)
(3.5)

with the initial condition

〈δNs (X; θ) δNs (X1;θ)〉 = nδ (x− x1) δ
(
p̂(k) − p̂(k)

1

)
f
(
x, p̂(k); θ

)
. (3.6)

When small-scale fluctuations are computed f
(
x, p̂(k); θ

)
can be considered a smooth enough function (not varying

considerably) and 〈δNs (X; θ) δNs (X1; θ1)〉 depends on θ − θ1 and x− x1 only. Introducing the Fourier transform:

〈δN (X; θ) δN (X1 θ1)〉 = 〈δNδN〉
(
θ − θ1,x− x1, p̂(k), p̂(k)

1

)
=

=
1

(2π)3

∫
d3k

( ˜δNδN)(θ − θ1,k, p̂(k), p̂(k)
1

)
exp [ik· (x− x1)] (3.7)

we cast equation (3.5) into the form

(
∂

∂θ
+ iRk·ṽ + ∆

)( ˜δNδN)s (τ,k, p̂(k), p̂(k)
1

)
= 0 (τ = θ − θ1) , (3.5a)

( ˜δNδN)s (τ,k, p̂(k), p̂(k)
1

)∣∣∣
τ=0

= nδ
(
p̂(k) − p̂(k)

1

)
f
(
x, p̂(k); θ

)
. (3.6a)

Further we introduce the one-sided Fourier transform in the time domain

( ˜δNδN)† (ω,k, p̂(k), p̂(k)
1

)
=

∞∫
0

dτ
( ˜δNδN)(τ,k, p̂(k), p̂(k)

1

)
exp (iωτ) . (3.8)

Multiplication of equation (3.5a) by eiωτ and subsequent integration on τ yields:

(−iω + iRk·ṽ + ∆)
( ˜δNδN)† (ω,k, p̂(k), p̂(k)

1

)
=
( ˜δNδN)s (0,k, p̂(k), p̂(k)

1

)
,

or

( ˜δNδN)† (ω,k, p̂(k), p̂(k)
1

)
=
inf

(
x, p̂(k); θ

)
ω − Rk·ṽ + i∆

δ
(
p̂(k) − p̂(k)

1

)
. (3.9)
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Using the equation ( ˜δNδN)(ω,k, p̂(k), p̂(k)
1

)
=
( ˜δNδN)† (ω,k, p̂(k), p̂(k)

1

)
+

+
[( ˜δNδN)† (ω,k, p̂(k), p̂(k)

1

)]∗
p̂↔p̂1

relating the one-sided and two-sided Fourier transform we get( ˜δNδN)s (ω,k, p̂(k), p̂(k)
1

)
=

2∆
(ω −Rk·ṽ)2 + ∆2

nf
(
x, p̂(k); θ

)
δ
(
p̂(k) − p̂(k)

1

)
.

The definition of Dirac’s δ-function

lim
∆→0

∆
(ω − Rk·ṽ)2 + ∆2

= πδ (ω − Rk·ṽ)

gives finally

( ˜δNδN)s (ω,k, p̂(k), p̂(k)
1

)
= 2πnf

(
x, p̂(k); θ

)
δ
(
p̂(k) − p̂(k)

1

)
δ (ω −Rk·ṽ) . (3.10)

To obtain an arbitrary solution of equation (3.3) we perform the Fourier transform

δN
(
x, p̂(k); θ

)
=

1
(2π)4

∫
dωd3kδÑ

(
ω,k, p̂(k)

)
ei(k·x−ωθ)

δÑ
(
ω,k, p̂(k)

)
=
∫
dθd3xδN

(
x, p̂(k); θ

)
ei(ωθ−k·x)

and find

δÑ
(
ω,k, p̂(k)

)
= δÑs

(
ω,k, p̂(k)

)
− inR

ω −Rk·ṽ + i∆
∇̂p ·

[
δ̃F̂ (ω,k) f (x̂; θ)

]
. (3.11)

What remains now is to compute the spectral density of fluctuating force δ̃F̂. In doing so we consider an arbitrary
function F (x; θ). Let the same function, written in the variables r = (x, z, s = Rθ) and t be Fr (r; t). Further we have

Fr (r; t) =
1

(2π)4

∫
dνd3mF̃r (ν; m)ei(m·r−νt) =

=
1

(2π)4

∫
dνd3mF̃r (ν; m) exp

{
i

[
mxx+mzz +msRθ−

ν (Rθ − σ)
vo

]}
=

=
ωo

(2π)4

∫
dωd3kF̃r

(
vokσ; kx, kz, kσ −

ω

R

)
ei(k·x−ωθ),

where the following change of variables

m =
(
kx, kz, kσ −

ω

R

)
; ν = vokσ (3.12)

has been introduced. Therefore the relation we are looking for reads as
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F̃ (ω; k) = ωoF̃r
(
vokσ; kx, kz, kσ −

ω

R

)
. (3.13)

Fourier analysing equations (2.12) we find

im × δB̃r = − iν
c2
δẼr + µ0qδ̃jr ; δB̃r =

1
ν

m× δẼr , (3.14a)

m·δB̃r = 0 ; im·δẼr =
q

ε0
δρ̃r . (3.14b)

Let us represent the electromagnetic fields as a sum of longitudinal and transversal components

δẼr = δẼ‖r + δẼ⊥r
(
m× δẼ‖r = 0 ; m·δẼ⊥r = 0

)
(3.15)

and further simplify the problem by considering

δ̃jr = voesδρ̃r . (3.16)

From the continuity equation (2.14) we get

δρ̃r =
1
ν

m·δ̃jr (3.17)

and using (3.13) and (3.16) we conclude that m = k. Thus we obtain

δẼ‖ (ω,k) = − iqk
ε0k2

δρ̃ (ω,k) , (3.18a)

δẼ⊥ (ω,k) =
iqβ2

okσ
ε0k2 (k2 − β2

ok
2
σ)

[k× (es × k)] δρ̃ (ω,k) , (3.18b)

δB̃ (ω,k) =
1

vokσ
k× δẼ⊥ (ω,k) =

iqβ2
o

ε0vo (k2 − β2
ok

2
σ)

(k× es) δρ̃ (ω,k) . (3.18c)

Retaining leading terms only, we write the fluctuating force δ̃F̂ as

δ̃F̂ (ω,k) =
q

β2
oEo

[
δẼ + vo

(
es × δB̃

)]
= − iq2k

ε0β2
oγ

2
oEo (k2 − β2

ok
2
σ)
δρ̃ (ω,k) . (3.19)

Integrating equation (3.11) on p̂(k) we obtain

δρ̃ (ω,k) = δρ̃s (ω,k)− inR
∫
d3p̂(k) ∇̂pf (x̂; θ)

ω −Rk·ṽ + i∆
· δ̃F̂ (ω,k)

and eliminating δ̃F̂ (ω,k) with (3.19) in hand we get finally

ε̃ (ω,k) δρ̃ (ω,k) = δρ̃s (ω,k) , (3.20)

where
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ε̃ (ω,k) = 1 +
q2nR

ε0β2
oγ

2
oEo (k2 − β2

ok
2
σ)

∫
d3p̂(k) k·∇̂pf (x̂; θ)

ω −Rk·ṽ + i∆
(3.21)

is the dielectric susceptibility of the beam. Thus for the spectral density of the fluctuating force we have the following
expression:

δ̃F̂ (ω,k) = − iq2k
ε0ε̃ (ω,k)β2

oγ
2
oEo (k2 − β2

ok
2
σ)
δρ̃s (ω,k) . (3.22)

IV. COLLISION INTEGRAL IN THE FORM OF BALESCU-LENARD.

According to (2.8) the collision integral is given by

Jcol
(
x̂, p̂(k); θ

)
= −R

n
∇̂p ·

〈
δF̂δN

〉(
x, p̂(k), θ; x, p̂(k), θ

)
. (4.1)

We shall express the right hand side of (4.1) in terms of the spectral densities of fluctuations δ̃F̂ and δÑ . Let F (x; θ)
and G (x1; θ1) be two random functions. The second moment in the variables x− x1, θ − θ1 can be written as

〈FG〉 (x, θ; x1, θ1) = 〈FG〉 (x, θ; x− x1, θ − θ1) =

=
1

(2π)4

∫
dωd3k

(
F̃G
)

(ω,k; x,θ) exp {i [k· (x− x1)− ω (θ − θ1)]} . (4.2)

As far as the second moment is a real function the spectral density obeys

(
F̃G
)

(ω,k; x,θ) =
(
F̃G
)∗

(−ω,−k; x,θ) . (4.3)

Letting x = x1, θ = θ1 in (4.2) with (4.3) in hand we find

〈FG〉 (x,θ; x, θ) =
1

(2π)4

∫
dωd3k Re

(
F̃G
)

(ω,k; x,θ) . (4.4)

Using (4.4) and taking into account only leading terms in δ̃F̂ we rewrite (4.1) as

Jcol
(
x̂, p̂(k); θ

)
= −R

n
∇̂p ·

∫
dωd3k

(2π)4
Re

( ˜
δF̂δN

)(
ω,k; x, p̂(k), θ

)
. (4.5)

Utilizing the expressions (3.11) and (3.22) we obtain( ˜
δF̂δN

)(
ω,k; x, p̂(k), θ

)
= − inRk·∇̂pf (x̂; θ)

ω −Rk·ṽ + i∆
k
( ˜
δF̂ δF̂

)
ω,k

−

− iq2nk
ε0ε̃β2

oγ
2
oEo (k2 − β2

ok
2
σ)
f (x;θ) 2πδ (ω − Rk·ṽ) ,

where
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( ˜
δF̂ δF̂

)
ω,k

=
q4n

ε2
0 |ε̃|

2
β4
oγ

4
oE

2
o (k2 − β2

ok
2
σ)2

∫
d3p̂(k)f (x; θ) 2πδ (ω −Rk·ṽ) . (4.6)

In formula (4.5) representing the collision integral only the real part of
( ˜
δF̂δN

)(
ω,k; x, p̂(k), θ

)
enters. Therefore

the expression to be substituted back into (4.5) reads as

Re

( ˜
δF̂δN

)(
ω,k; x, p̂(k), θ

)
= −πnRδ (ω −Rk·ṽ) k

( ˜
δF̂ δF̂

)
ω,k

k · ∇̂pf (x̂; θ)−

− 2πq2nk
ε0β2

oγ
2
oEo (k2 − β2

ok
2
σ)
δ (ω −Rk·ṽ)

Imε̃ (ω,k)
|ε̃ (ω,k)|2

f (x; θ) , (4.7)

where

Imε̃ (ω,k) = − πq2nR

ε0β2
oγ

2
oEo (k2 − β2

ok
2
σ)

∫
d3p̂(k)δ (ω − Rk·ṽ) k · ∇̂pf (x̂; θ) . (4.8)

Finally, the collision integral (4.5) can be written in the form of Balescu-Lenard as

J (BL)
col

(
x̂, p̂(k); θ

)
=

πq4nR

ε2
0β

4
oγ

4
oE

2
o

∇̂p ·
∫
d3kd3p̂(k)

1

(2π)3
δ (k · ṽ− k · ṽ1) ∗

∗ kk

|ε̃ (Rk·ṽ,k)|2 (k2 − β2
ok

2
σ)2
·

·
[
f
(
x, p̂(k)

1 ; θ
)
∇̂pf

(
x̂, p̂(k); θ

)
− f

(
x, p̂(k); θ

)
∇̂p1f

(
x̂, p̂(k)

1 ; θ
)]
. (4.9)

The collision integral (4.5) can be put in an equivalent form of a nonlinear Fokker-Planck operator

J (BL)
col

(
x̂, p̂(k); θ

)
= ∇̂p ·

[
D̂(BL) · ∇̂pf

(
x̂, p̂(k); θ

)]
+ ∇̂p ·

[
A(BL)f

(
x, p̂(k); θ

)]
, (4.10)

where the drift and diffusion coefficients

D̂(BL) = πR2

∫
dωd3k

(2π)4 δ (ω − Rk · ṽ) k
( ˜
δF̂ δF̂

)
ω,k

k, (4.11a)

A(BL) =
q2R

ε0β2
oγ

2
oEo

∫
dωd3k

(2π)4 δ (ω −Rk · ṽ)
k

k2 − β2
ok

2
σ

Imε̃ (ω,k)
|ε̃ (ω,k)|2

(4.11b)

depend on the distribution function itself.

V. COLLISION INTEGRAL IN THE FORM OF LANDAU.

The dielectric function (3.21) depends on the distribution function and consequently the corresponding kinetic
equation with the collision integral in the form of Balescu-Lenard is extremely complicated to solve. Thus one should
seek reasonable ways for further simplifications. First of all we shall determine the equilibrium state described by
f0

(
x̂, p̂(k); θ

)
and satisfying
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[
∂

∂θ
+ R

(
v̂ · ∇̂x

)
+R

(
F̂0 · ∇̂p

)]
f0

(
x̂, p̂(k); θ

)
= 0. (5.1)

It can be easily checked that equation (5.1) has a solution of the form

f0

(
x̂, p̂(k); θ

)
= f0

(
2Jx
2εx

,
2Jz
2εz

,
2Jσ
2εσ

)
, (5.2)

where

2Ju =
1
βu

[
û2 +

(
βu p̂

(k)
u + αuû

)2
]

; (u = x, z) , (5.3a)

2Jσ =
η̂(k)2

λ
+ λ

(
σ̂ − σs +

R

κ
tan Φs

)2

. (5.3b)

In the above expressions α, β and γ are the well-known Twiss parameters

dαu
dθ

=
Gu
R
βu − Rγu ;

dβu
dθ

= −2Rαu ;
dγu
dθ

=
2Gu
R

αu,

βuγu − α2
u = 1,

while

λ2 =
1

2πR2

∆E0

β2
oEo

κ

K cos Φs ;
(
βσ = λ−1

)
; ν2

s = R2K2λ2,

κ - being the harmonic acceleration number, Φs - the phase of synchronous particle, νs is the synchrotron tune and
βσ can be interpreted as the ”synchrotron beta-function”. The quantities εx, εz and εσ are related to the transverse
and longitudinal beam size and are referred to as equilibrium beam emittances. To describe a local equilibrium state
(see next section) one can formally choose the equilibrium beam emittances εx, εz and εσ proportional to the beta-
functions by a universal scaling factor ε/R characterizing the equilibrium state. Let us recall that at local equilibrium
all the parameters of the distribution are allowed to depend on coordinates and time [7], which is consistent with the
specific choice above. Further, by specifying the generic function (5.2) for slowly varying beam envelopes we find

f0

(
x̂, p̂(k); θ

)
= V

(
R

2πε

)3/2

exp

[
−

2R
(
Jxβ

−1
x + Jzβ

−1
z + Jσβ

−1
σ

)
2ε

]
. (5.4)

The equilibrium beam emittances εx, εz and εσ are related to the temperature of the beam through the expression

εx,z,σ =
ε

R
βx,z,σ ;

(
ε

R
=

kBT

β2
oEo

)
(5.5)

In order to obtain the collision integral in the form of Landau we consider ε̃ (Rk · ṽ,k) = 1 in equation (4.9) and
simultaneously take into account the effect of polarization by altering the domain of integration on k for small k.
As far as the large values of k are concerned the upper limit of integration can be obtained from the condition that
perturbation expansion holds. To proceed further it is convenient to change variables in the Balescu-Lenard kinetic
equation according to

η̂(k) −→ −sign (K)
η̂(k)√
|K|

; kσ −→
kσ√
|K|

.
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This means that the canonical coordinate σ has been transformed according to σ −→ σ
√
|K|, and in order to retain

the hamiltonian structure of the microscopic equations of motion the σ - component of the force should also be
transformed as F̂σ −→ −sign (K) F̂σ. Taking into account the fact that the Balescu-Lenard collision integral is
proportional to the square of the fluctuating force we can write

J (BL)
col

(
x̂, p̂(k); θ

)
=

πq4nR

ε2
0β

4
oγ

4
oE

2
o

∇̂p ·
∫
d3kd3p̂(k)

1

(2π)3 δ
(
k · p̃(k) − k · p̃(k)

1

)
∗

∗ kk∣∣ε̃ (Rk · p̃(k),k
)∣∣2 (k2

x + k2
z + k2

σ/γ
2
o |K|)

2
·

·
[
f
(
x, p̂(k)

1 ; θ
)
∇̂pf

(
x̂, p̂(k); θ

)
− f

(
x, p̂(k); θ

)
∇̂p1f

(
x̂, p̂(k)

1 ; θ
)]
, (5.6)

where

p̃(k) =
(
p̃(k)
x , p̃(k)

z , η̂(k)
)
.

Handling the integral

ÎL (g) =
∫
d3k

kk

(k2
x + k2

z + k2
σ/γ

2
o |K|)

2 δ (k · g) ,
(
g = p̃(k) − p̃(k)

1

)
(5.7)

by choosing a reference frame in which the vector g points along the σ - axis, and using cylindrical coordinates in this
frame we find

ÎL (g) =

∞∫
0

dk⊥k⊥

2π∫
0

dΦ

∞∫
−∞

dkσδ (kσg)
1

(k2
⊥ + k2

σ/γ
2
o |K|)

2 ∗

∗

 k⊥ cos Φ
k⊥ sin Φ
kσ

 k⊥ cos Φ
k⊥ sin Φ
kσ

 =
π

g

(
Î− eses

) kL∫
kD

dk⊥
k⊥

=
πL
g

(
Î− eses

)
. (5.8)

As was mentioned above in order to avoid logarithmic divergences at both limits of integration on k⊥ in (5.8) we have
altered them according to

kD =
1

γorD
; kL =

4πε0kBT

γoq2
. (5.9)

Thus the Coulomb logarithm L is defined as

L = ln
[

4π
q3
√
n

(ε0kBT )3/2

]
. (5.10)

The tensor ÎL (g) can be evaluated in an arbitrary reference frame to give

ÎL (g) =
πL
g

(
Î− gg

g2

)
. (5.11)

Finally the collision integral (5.6) can be represented in the form of Landau as

J (L)
col

(
x̂, p̂(k); θ

)
=

q4nRL
8πε2

0β
4
oγ

4
oE

2
o

∇̂p ·
∫
d3p̂(k)

1 ĜL (g) ·

12



·
[
f
(
x, p̂(k)

1 ; θ
)
∇̂pf

(
x̂, p̂(k); θ

)
− f

(
x, p̂(k); θ

)
∇̂p1f

(
x̂, p̂(k)

1 ; θ
)]
, (5.12)

where

ĜL (g) =
1
g

(
Î− gg

g2

)
(5.13)

is the Landau tensor [8].

VI. THE LOCAL EQUILIBRIUM STATE AND APPROXIMATE COLLISION INTEGRAL.

The local equilibrium state is defined as a solution to the equation

Jcol
(
x̂, p̂(k); θ

)
= 0, (6.1)

where the collision integral is taken either in Balescu-Lenard or Landau form. This solution is well-known to be the
Maxwellian distribution

fq
(
x̂, p̂(k); θ

)
= ρ

(
R

2πε

)3/2

exp
[
−R

2ε

(
p̂(k) − u

)2
]
, (6.2a)

∫
d3x̂ρ (x̂; θ) = V, (6.2b)

where ρ (x̂; θ), ε (x̂; θ) and u (x̂; θ) are functions of x̂ and θ. It should be clear that the local equilibrium state is not
a true thermodynamic equilibrium state, since the latter must be homogeneous and stationary. To prove that the
distribution (6.2) is a solution of (6.1) when the collision integral is taken in Landau form (5.12) it is sufficient to take
into account the obvious identity

ĜL (a) · a = aT · ĜL (a) = 0. (6.3)

Next we note that the Landau collision integral (5.12) can be written as a nonlinear Fokker-Planck operator

J (L)
col

(
x̂, p̂(k); θ

)
= B

[
∇̂p ·

(
D̂ · ∇̂p

)
− ∇̂p ·A

]
f
(
x̂, p̂(k); θ

)
, (6.4)

where

B =
L

8πr4
Dγ

4
o

ε2

nR
, (6.5a)

D̂ =
∫
d3p̂(k)

1 ĜL (g)f
(
p̂(k)

1

)
; A =

∫
d3p̂(k)

1 ĜL (g) · ∇̂p1f
(
p̂(k)

1

)
. (6.5b)

Our goal in what follows will be to match the transition to the unified kinetic equation. To approach this it is sufficient
to compute the drift and diffusion coefficients (6.5b) using the local equilibrium distribution (6.2). A more systematic
approximation methods using the linearized Landau collision integral can be found in [8]. Going over to the new
variable
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C =

√
R

2ε

(
p̂(k) − u

)
=

√
R

2ε
δp̂ (6.6)

we write

D̂ (C) =
2ε
R

∫
d3C1ĜL (g) fq (C1) = A0 (C) ĜL (δp̂) +A1 (C)

δp̂δp̂

(δp̂)4 , (6.7)

where g = C−C1 and A0, A1 are functions of the modulus of the vector C

A1 (C) = δp̂ · D̂ · δp̂ =
2ε
R

∫
d3C1δp̂ · ĜL (g) · δp̂fq (C1) , (6.8a)

A0 (C) =
δp̂

2
Sp
(
D̂
)
− 1

2δp̂
A1 (C) , (6.8b)

Sp
(
D̂
)

=
4ε
R

∫
d3C1

fq (C1)
|C−C1|

. (6.8c)

To compute the integrals (6.8a) and (6.8c) we use spherical coordinates in a reference frame in which vector C points
along the σ - axis. We find

Sp
(
D̂
)

=
2ρ
π3/2

√
R

2ε

∞∫
0

dC1C
2
1

2π∫
0

dΦ

1∫
−1

d cos Θ
e−C

2
1

g
,

A1 (C) =
ρ

π3/2

√
2ε
R

∞∫
0

dC1C
2
1

2π∫
0

dΦ

1∫
−1

d cos Θ
e−C

2
1

g

[
C2 −

(
C2 − CC1 cos Θ

)2
g2

]
,

where we have used g ·C = C2 − CC1 cos Θ. Changing variables in the above integrals according to

g2 = C2 + C2
1 − 2CC1 cos Θ ; d cos Θ = − g

CC1
dg

yields the result:

Sp
(
D̂
)

=
4ρ
C

√
R

2πε

∞∫
0

dC1C1e
−C2

1

C+C1∫
|C−C1|

dg =

=
8ρ
C

√
R

2πε

 C∫
0

dC1C
2
1e
−C2

1 + C

∞∫
C

dC1C1e
−C2

1

 =
2ρ
C

√
R

2ε
erf (C) .

and similarly

A1 (C) =
2ρ
C
√
π

√
2ε
R

∞∫
0

dC1C1e
−C2

1

C+C1∫
|C−C1|

dg

[
C2 −

(
g2 − C2

1 + C2
)2

4g2

]
=
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=
8ρ

3C
√
π

√
2ε
R

 C∫
0

dC1C
4
1e
−C2

1 +C3

∞∫
C

dC1C1e
−C2

1

 =
ρ

C

√
2ε
R

[
1−C d

dC

]
erf (C) ,

where erf (C) is the error function. Thus for the coefficients A0 and A1 in (6.8) we have

A0 (C) = ρC (C) ; A1 (C) =
ρ

C

√
2ε
R

[
1− C d

dC

]
erf (C) , (6.9)

where

C (C) =
1

2C2

(
2C2 − 1 + C

d

dC

)
erf (C) (6.10)

is the Chandrasekhar function. The drift vector can be written as

A (δp̂) = −R
ε
D̂ (δp̂) · δp̂ = −R

ε
A1 (C)

δp̂

(δp̂)2 . (6.11)

The drift and diffusion coefficients can be further evaluated by substituting δp̂ with the r.m.s. value

(δp̂i)rms =

√
ε (x̂; θ)
R

; (Ci)rms =
1√
2
. (6.12)

Thus we obtain

D̂ = DÎ ; A = −R
ε
Dδp̂, (6.13)

where

D =
1
3
Sp
(
D̂
)

=
2R3/2erf

(√
3/2
)

(3ε)3/2

ε (x̂; θ)
R

(6.14)

for ρ (x̂; θ) ∼ 1. This enables us to cast (6.4) into the form

J (L)
col

(
x̂, p̂(k); θ

)
=

1
θrel

{
ε (x̂; θ)
R
∇̂2
p + ∇̂p ·

[
p̂(k) − u (x̂; θ)

]}
f
(
x̂, p̂(k); θ

)
, (6.15)

where

θrel =
12
√

3π

erf
(√

3/2
) nr4

Dγ
4
o

L
√
εR

(6.16)

is the relaxation ”time”.
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VII. THE GENERALIZED KINETIC EQUATION.

The transition to local equilibrium, that is the kinetic stage of relaxation, is described by the Balescu-Lenard or
the Landau kinetic equation. The latter with due account of the approximate collision integral (6.15) can be written
as

∂f

∂θ
+ R

(
p̂(k) · ∇̂x

)
f + R

(
F̂ · ∇̂p

)
f =

1
θrel

[ ε
R
∇̂2
p + ∇̂p ·

(
p̂(k) − u

)]
f, (7.1)

F̂ = F̂0 +
〈
F̂
〉
.

It is well-known [4] that the kinetic equation (7.1) is equivalent to the system of Langevin equations:

dx̂
dθ

= Rp̂(k) ;
dp̂(k)

dθ
= − 1

θrel

(
p̂(k) − u

)
+RF̂ +

√
ε

Rθrel
~ξ (θ) , (7.2)

where ~ξ (θ) is a white-noise random variable with formal correlation properties

〈
~ξ (θ)

〉
= 0 ; 〈ξm (θ) ξn (θ1)〉 = 2δmnδ (θ − θ1) . (7.3)

The generalized kinetic equation (2.7) describes the evolution of the beam for time scales greater than the relaxation
time θrel. In order to determine the additional collision integral J̃

(
x̂, p̂(k); θ

)
we use the method of adiabatic elim-

ination of fast variables, which in our case are the kinetic momenta p̂(k). In the limit of small times θrel (compared
to the time scale of physical interest) the second equation (7.2) relaxes sufficiently fast to the quasi-stationary (local
equilibrium) state for which dp̂(k)/dθ −→ 0. Thus we find

p̂(k) = u + RθrelF̂ +

√
εθrel
R

~ξ (θ) (7.4)

and substituting this into the first of equations (7.2) we arrive at

dx̂
dθ

= Ru + R2θrelF̂ +
√
εRθrel~ξ (θ) . (7.5)

The above equation (7.5) governs the evolution of particles within the elementary cell of continuous medium, where
local equilibrium state is established. Such a coarse-graining procedure gives rise to the additional collision integral in
the generalized kinetic equation (2.7). The latter follows straighforwardly from (7.5) and can be written in the form:

J̃
(
x̂, p̂(k); θ

)
= Rθrel

{
∇̂x ·

[
ε (x̂; θ) ∇̂x

]
− R

(
∇̂x · F̂

)}
f
(
x̂, p̂(k); θ

)
. (7.6)

VIII. CONCLUDING REMARKS.

In the present paper we have studied the role of electromagnetic interactions between particles on the evolution of
a high energy beam. The interparticle forces we have considered here are due to space charge alone. Starting with
the reversible dynamics of individual particles and applying a smoothing procedure over the physically infinitesimal
spacial scales, we have derived a generalized kinetic equation for kinetic, hydrodynamic and diffusion processes.

We would like to point out an important feature of the approach presented in this work. The irreversibility of beam
evolution is introduced at the very beginning in the initial equation (2.1) for the microscopic phase space density.
Smoothing destroys information about the motion of individual particles within the unit cell of continuous medium,
hence the reversible description becomes no longer feasible. Details of particle dynamics become lost and motion
smears out due to dynamic instability, and to the resulting mixing of trajectories in phase space.
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The collision integral for a high energy beam has been derived (Sections IV and V) in the form of Balescu-Lenard
and Landau. This collision term scales as E−6

o (Eo is the energy of the synchronous particle) which comprises a
negligibly weak dissipative mechanism for high energy beams.

To accomplish the transition to the generalized kinetic equation the Landau collision term has been simplified by
linearizing it around the local equilibrium distribution. The latter suggests a close relation between equilibrium beam
emittance and the temperature of the beam.

Finally in Section VII we have derived the additional dissipative term due to the redistribution of particle coordi-
nates. This has been achieved by applying the method of adiabatic elimination of fast variables (kinetic momenta).
The physical grounds for this application is provided the fact that within the physically infinitesimal confinement
the relatively slow process of smear in configuration space is induced by the sufficiently fast relaxation of particle
velocities towards a local equilibrium state. It maybe worthwhile to note that a more systematic approach involving
the projection operator technique [4] could be used to derive the additional collision integral in the generalized kinetic
equation.
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